

OUESTION BANK (DESCRIPTIVE)

Subject with Code: KKR (20CS1403) Year & Sem : III B.Tech & I-Sem Course & Branch: B.Tech – CAI Regulation: R20

UNIT –I

INTRODUCTION

	а	Why is knowledge representation and reasoning (KRR) essential in artificial	[I 2][CO1]	[6 M]
1	u	intelligence		
	b	What role does logic play in knowledge representation and reasoning (KRR)	[L4][CO1]	[6M]
	a	Explain first-order logic, and how does it function within knowledge	[L2][CO1]	[6M]
2		representation and reasoning		
	b	Explain types of KRR	[L4][CO1]	[6M]
	a	Describe Syntax in First ordered Logic	[L2][CO1]	[6M]
3	b	Describe semantics in First ordered Logic	[L4][CO1]	[6M]
	a	Describe pragmatics in First ordered Logic	[L2][CO1]	[6M]
4	b	Illustate production rules	[L4][CO1]	[6M]
	a	Analyze Explicit belief	[L2][CO1]	[6M]
5	b	Apply facts and relations concept on Student-Professor relation.	[L4][CO1]	[6M]
	a	Analyze implicit belief	[L2][CO1]	[6M]
6	b	Create your family knowledge base	[L4][CO1]	[6M]
	a	Illustrate expressive knowledge in KRR	[L2][CO1]	[6M]
7	b	Create a Knowledge base for Vitamins deficiency and symptoms	[L4][CO1]	[6M]
	a	Organize knowledge Engineering in KRR	[L2][CO1]	[6M]
8	b	Summerize facts in KRR	[L4][CO1]	[6M]

UNIT –II

RESOLUTION

1	a	Describe Propositional case	[L2][CO2] [6M]
	b	Analyze Knowledge Representation and Resolution	[L4][CO2] [6M]
	a	Illustrate Handling of variables and quantifiers	[L2][CO2] [6M]
2	b	Evaluate Davis-Putnam procedure (DP) for satisfiability	[L4][CO2] [6M]
	a	Derive The First-Order Case in Computational intractability	[L2][CO2] [6M]
3	b	Derive Herbrand in Computational intractability	[L4][CO2] [6M]
	a	Describe Clauses with an example	[L2][CO2] [6M]
4	b	Create Facts and rules of any real world problem	[L4][CO2] [6M]
	a	Analyze Horn clauses with examples	[L2][CO2] [6M]
5	b	Categroize horn clause and pure negative clauses by using greedy paradigm.	[L4][CO2] [6M]
	a	Analyze Deductive database in datalog	[L2][CO2] [6M]
6	b	Create knowledge base and make queries.	[L4][CO2] [6M]
	a	What is Selective Linear Definite(SLD)resolution.	[L2][CO2] [6M]
7	b	Sketch SLD resolution tree.	[L4][CO2] [6M]
	a	Describe Backward chaining in SLD.	[L2][CO2] [6M]
8	b	Implement Backward chaining.	[L4][CO2] [06M]
	a	Describe forward chaining in SLD	[L2][CO2] [06M]
9	b	Implements forward chaining.	[L4][CO2] [06M]

UNIT –III <u>REASONING</u>

1	An	Analyse the Procedural control reasoning .		[12M]
-	a	Describe the Rule formation in KRR.	[L2][CO3]	[6M]
2	b	Analyse the types of Rules in KRR.	[L4][CO3]	[6M]
3	Illustrate searching strategies in KRR with examples			[12M]
4	Analyse the Algorithm design in KRR			[12M]
5	Identify key challenges in Algorithm design in KRR			[12M]
	a	Explain the importance of Goal order in KRR	[L2][CO3]	[6M]
0	b	Explain the methods of specifying Goal Order	[L2][CO3]	[6M]
7	An	Analyze the committing to proof in KRR		[12M]
0	a	Discuss the Back Track controlling in KRR.	[L2][CO4]	[6M]
8	b	Discuss the concept Negation as Failure in KRR.	[L2][CO4]	[6M]
9	Cre	Create a production system of any real world problem		[12M]
10	a	Analyze working memory in KRR	[L4][CO4]	[6M]
10	b	Evolve Production rules in KRR	[L3][CO4]	[6M]
11	a	Explain conflict Resolution in production systems	[L2][CO4]	[6M]
11	b	Describe applications and advantages of Production system	[L2][CO4]	[6M]

UNIT –IV

REPRESENTATION

1	De	scribe Object Oriented Representation In KRR . with example	[L2][CO5]	[12M]
2	a	Describe the Frames formationim KRR	[L2][CO5]	[6M]
	b	Analyse frame with example in KRR	[L4][CO5]	[6M]
3	a	Elaborate key concepts in Frame formalization	[L4][CO5]	[6M]
	b	List out Advantages and Applications of Frame Formalism	[L2][CO5]	[6M]
4	a	Describe Structured Description	[L2][CO5]	[6M]
	b	Create an real world Structure Description	[L7][CO5]	[6M]
5	a	Analyze benefits of structured description in KRR	[L4][CO5]	[6M]
	b	Describe key concepts of Description Language in KRR	[L3][CO5]	[6M]
6	a	Explain major types of Description Language in KRR	[L2][CO5]	[6M]
	b	Describe applications and advantages of Production system	[L2][CO5]	[6M]
7	De	scribe Entailment and its types with examples	[L3][CO5]	[12M]
8	a	Analyze computational entailment	[L4][CO5]	[6M]
	b	Explain practical tools for Computational Entailment	[L2][CO5]	[6M]
9	a	Describe key concepts of Taxonomy and Classification of KRR	[L3][CO5]	[6M]
	b	Evolve Taxonomy relations in Knowledge Representation	[L3][CO5]	[6M]

UNIT –V

APPLICATIONS OF KRR

1	D	escribe Applications of KRR in Intelligent systems	[L2][CO6]	[12M]
	a	Describe planning in intelligent systems	[L2][CO6]	[6M]
2	b	Analyse planning algorithms in intelligent systems	[L4][CO6]	[6M]
	a	Elaborate Applications of planning	[L4][CO6]	[6M]
3	b	Explain key components of Robotics	[L2][CO6]	[6M]
	a	Describe types of Robots	[L2][CO6]	[6M]
4	b	Analyze Applications of Robots	[L4][CO6]	[6M]
_	a	Analyze Challenges of Robots	[L4][CO6]	[6M]
5	b	Describe Natural language understanding	[L3][CO6]	[6M]
_	a	Explain Intelligent tutoring systems	[L2][CO6]	[6M]
0	b	Describe role of NLU in intelligent tutoring system	[L2][CO6]	[6M]
7	D	escribe Intelligent Agents with examples	[L3][CO6]	[12M]
8	a	Analyze challenges in NLU for ITS	[L4][CO6]	[6M]
	b	Explain practical Examples of NLU-ITS	[L2][CO6]	[6M]
9	a	Describe Architecture of Intelligent agents	[L3][CO6]	[6M]
	b	Illustrate Applications of Intelligent agents	[L3][CO6]	[6M]
10	a	Describe Robotics and automation	[L3][CO6]	[6M]
	b	Illustrate Applications of Robotics automation	[L3][CO6]	[6M]

Prepared by: Dr.Dubisetty Nagaraju Assoc. Prof., CSE